Truncated N-glycans affect protein folding in the ER of CHO-derived mutant cell lines without preventing calnexin binding.
نویسندگان
چکیده
The involvement of N-glycans in the folding of influenza virus hemagglutinin (HA) was analyzed in two CHO-derived glycosylation mutants exhibiting a thermosensitive defect for secretion of human placental alkaline phosphatase. Truncated Man(5)GlcNAc(2)oligosaccharides with one or three glucose residues are attached to proteins of the MadIA214 and B3F7AP2-1 mutant cells, respectively. Newly synthesized proteins retained in these cells carry a Man(4)trimmed glycan generated by a mannosidase different from the ER mannosidases I and II and suggesting a recycling through the Golgi complex. The glucosidase inhibitor castanospermine affects the binding of HA folding intermediates to the lectin-like chaperone calnexin in B3F7AP2-1 but not in MadIA214 cells. We demonstrated that calnexin interacts in vivo with truncated Man(5)derivatives. In MadIA214 cells, this is only possible when Man(5)GlcNAc(2)on protein becomes reglucosylated. The pattern of intermediates seen during the folding of HA in the MadIA214 and B3F7AP2-1 mutant cell lines is different than in control cells. We also observed a variable occupancy of the seven glycosylation-sites. However, even under conditions that restore glycosylation of all sites, the folding intermediates of HA in the mutant cells still remain heterogeneous. Our results demonstrate that addition of truncated N-glycans interferes extensively with the folding of newly synthesized proteins in vivo.
منابع مشابه
The Number and Location of Glycans on Influenza Hemagglutinin Determine Folding and Association with Calnexin and Calreticulin
Calnexin and calreticulin are homologous molecular chaperones that promote proper folding, oligomeric assembly, and quality control of newly synthesized glycoproteins in the endoplasmic reticulum (ER). Both are lectins that bind to substrate glycoproteins that have monoglucosylated N-linked oligosaccharides. Their binding to newly translated influenza virus hemagglutinin (HA), and various mutan...
متن کاملDistinct patterns of folding and interactions with calnexin and calreticulin in human class I MHC proteins with altered N-glycosylation.
Calnexin is a lectin-like chaperone that binds to class I MHC molecules soon after their synthesis, retaining unassembled heavy chains and also assisting their folding. Following association with beta2-microglobulin (beta2m) in the endoplasmic reticulum, a large proportion of human class I molecules release from calnexin, whereas mouse class I molecules do not. We asked whether addition of a se...
متن کاملInhibition of invariant chain (Ii)-calnexin interaction results in enhanced degradation of Ii but does not prevent the assembly of alpha beta Ii complexes
Calnexin is a resident protein of the endoplasmic reticulum (ER) that associates with nascent protein chains. Among the newly synthesized integral membrane proteins known to bind to calnexin is invariant chain (Ii), and Ii release from calnexin coincides with proper assembly with major histocompatibility complex (MHC) class II heterodimers. Although calnexin association with several membrane gl...
متن کاملTruncated forms of RUNX3 unlike full length protein alter cell proliferation in a TGF-β context dependent manner
The Runt related transcription factors (RUNX) are recognized as key players in suppressing or promoting tumor growth. RUNX3, a member of this family, is known as a tumor suppressor in many types of cancers, although such a paradigm was challenged by some researchers. The TGF-β pathway governs major upstream signals to activate RUNX3. RUNX3 protein consists of several regions and domains. The Ru...
متن کاملTruncated forms of RUNX3 unlike full length protein alter cell proliferation in a TGF-β context dependent manner
The Runt related transcription factors (RUNX) are recognized as key players in suppressing or promoting tumor growth. RUNX3, a member of this family, is known as a tumor suppressor in many types of cancers, although such a paradigm was challenged by some researchers. The TGF-β pathway governs major upstream signals to activate RUNX3. RUNX3 protein consists of several regions and domains. The Ru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Glycobiology
دوره 10 1 شماره
صفحات -
تاریخ انتشار 2000